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ABSTRACT 

This work presents a complete methodology for 

disaggregated substation peak active and non-

compensated reactive power forecasting. The method 

requires measured active and reactive power from 

substation transformers, billing data divided by consumer 

type and global energy forecasting by consumer type. The 

peak active power forecasting is based on the 

cointegration between this variable and the energy 

associated with the substation. The non-compensated 

peak reactive power is based on artificial neural 

networks and uses the first difference from the measured 

data to filter atypical events such as capacitor banks 

switching. The forecast of peak power of substations 

permits to support the planning of new investments on 

grid expansion, reactive support and energy purchasing. 

INTRODUCTION 

With the liberalization of the Brazilian electric sector, 

power forecasts started to play a key role with regard to 

investments in distribution, planning and energy 

management strategies at regional and national systems. 

Inaccurate results may increase operating costs, since the 

overestimation in future demand results in an 

unnecessary spinning reserve. Also reactive power 

management has become important for Distribution 

System Operators (DSO), who need to keep voltage 

limits, providing power quality and system reliability. 

Additionally, Brazilian DSOs must make active and 

reactive power forecasts to provide necessary information 

for national transmission and generation planning studies 

according to regulatory legislation.  

There are several load forecasting methodologies using 

techniques such as the naive forecast, autoregressive 

methods, econometric methods and methods involving 

intelligent algorithms such as genetic algorithms and 

neural networks [1-5]. As an example the reference [6] 

presents a methodology for probabilistic forecasting 

active load, based on measurements of load, historic 

temperatures and the country’s GDP, which seeks to take 

advantage of the large amount of data available in 

modern electrical systems. Reference [7] presents a 

methodology to forecast hourly reactive power in the 

short term through statistical models. The study showed 

that reactive power cannot be modelled by a simple 

regression of active power, the adoption of other 

measures being necessary. Reference [8] describes a 

system based on artificial neural networks for prediction 

of active and reactive power in the short term for 

substation transformers, using measured data from 

feeders. 

It is proposed in this paper a complete methodology for 

peak active and peak non-compensated reactive power 

forecasting for long-term perspective. The active power 

forecast is based on cointegrated series theory. The non-

compensated reactive power forecast is based on the use 

of artificial neural networks with the use of first 

differences of historical active and reactive power 

measurements to evidence atypical events like capacitor 

bank switching. To do so it is used measurements from 

active and reactive power from substations transformers, 

billing data and energy forecasting. 

This methodology can be used as a tool to several 

planning decisions such as reactive support and energy 

purchasing. 

ACTIVE POWER FORECASTING 

The active power forecasting methodology is based on 

the cointegrated series theory to obtain a regression 

function that allows mapping energy associated with the 

substation with its monthly peak active power. 

The first step is the computation of vegetative growth per 

substation by the disaggregation of global energy 

projections by consumer type. It is known that different 

substations, depending on the location region, have 

different behaviours regarding load growth. And these 

differences can be captured by historical consumption 

growth analysis observed in the substation for each 

consumer type. The energy disaggregation is analysed 

considering breakdown into classes of consumption, large 

consumers, energy losses, energy generation and changes 

in network configuration. Therefore the total energy 

associated with the substation can be estimated. 

Energy values per substation, when aggregated under the 

conditions set by punctual adjustments, shall provide an 

overall value harmonized with the overall value projected 

by market team (unless of uncertainties, confidence 
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intervals and the data source designed considering 

information beyond those related to billed consumption). 

To obtain such compliance, the growths per class per 

substation are elected susceptible to changed. 

The total monthly load of a substation, determined via 

disaggregation and validated by comparing with the 

measured value, is used as input in determining the 

monthly peak demand. This determination is based on the 

concept of cointegration and is applied from the 

knowledge of the time series of monthly measured data 

and power for energy substation. 

The global energy disaggregation per class in all 

substations was treated as a mathematical optimization 

problem whose results were growth rates by consumer 

type in each considered substation. 

Figure 1 illustrates the behaviour of two sets of data: the 

monthly consumed energy and the measured peak active 

power. The series have a strong correlation. This high 

degree of correlation indicates an equilibrium relationship 

between the quantities being measured. That is, Figure 1 

shows that a variation in the amount of monthly energy is 

accompanied by a similar variation to the monthly peak 

power. 

 

 
Figure 1: Energy (red) and peak active power (blue) series 

These two variables have a linear relation as shown in 

Figure 2. The cointegration method permits to model the 

mathematical relation between the variables. Through 

this linear model it is possible to forecast the peak active 

power with only billing data and global energy 

forecasting. 

A flowchart that summarizes the methodology is 

presented in Figure 3. First, using the billing data for each 

substation, the annual growth rate per consumer type is 

obtained. Then the disaggregation method uses the global 

forecast in order to estimate the energy consumption by 

consumer type for all substations. An energy balance is 

made by adding energy losses, distributed generation and 

other data. With the total energy computation, i.e. the 

total amount of energy associated with each substation, 

energy series are cointegrated with peak active power of 

the respective substation in order to create a liner model 

between these two variables. The validation of the model 

is done by comparing actual data of peak active power 

with the forecasted for the same period. 

 

 
Figure 2: Linear relation between monthly energy and peak active 

power 

 

 
 

Figure 3: Active power forecast methodology flowchart. 

REACTIVE POWER FORECASTING 

The reactive power forecasting methodology aims to 

make a prediction that is free from influences of events 

that would induce errors in the result, such as capacitor 

banks or large consumer’s switching. The goal is to 

forecast the peak demand of reactive power without the 

presence of reactive support. 

The starting point for the methodology development was 

based on the active and reactive power measurements on 

substations transformers (Figure 4). This analysis shows 

grouped clouds of data that depends on the number of 

capacitor banks on the substation feeders. For example, 

the substation shown in Figure 4 (a) has one capacitor 

bank, and in Figure 4 (b) the substation has two capacitor 

banks. Each cloud of data can be modelled by a linear 

curve that will have approximately the same slope. 
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Figure 4: Active and reactive power measurements – (a) Substation with 

one capacitor bank. (b) Substation with two capacitor banks. 

This analysis exemplifies the difficulty already evidenced 

in the literature to perform a reactive power forecast 

using measuring data. To solve this problem it was 

considered the analysis of the differences between 

sequential measurements of active and reactive power, 

i.e. the first difference of the series. By analysing the 

scatter plot of these series it was noted that the point 

clouds tend to focus on a single cloud with a linear 

relation and only a few outliers. The outliers represent 

momentary load variations (active power on the x-axis 

and reactive power on y-axis). In the case of reactive 

power, this happens with the switching of reactive 

support equipment on the grid, such as bank capacitors, 

and the strong variation of active power is related to the 

switching of large consumers. A linear regression is made 

between the two first difference series with an outlier 

removal method. 

 

 
 

Figure 5: Scatter diagram between first difference series of active and 
reactive power 

The difference scatter will give the relation between 

variations of active and reactive power. The proposed 

methodology assumes the angular coefficient as a 

function of consumer types participation on the total 

energy consumption per substation. A model is created 

with a neural network to recognize standards, using 

historical measurement, associating the monthly market 

share with the angular coefficients that relates the 

variations between active and reactive power. This model 

will assess the influence of each consumer type in the 

angle variations. 

In this approach, the billing data were normalized by the 

total month consumption, seeking the relationship 

between the angles of the variations in the share of each 

consumer type relative to the total monthly consumption. 

With the obtained relationship between the variation 

angle and billing data by consumer type, the angles of 

future changes can be estimated through the 

disaggregated consumption forecasts by consumer class.  

In addition to the angular coefficient between variations 

of active and reactive power, more data is needed in order 

to forecast the non-compensated peak reactive power. 

The power factor relates instantaneous active and reactive 

power, and also should relate the monthly peak active and 

reactive power, since the peak demand of reactive power 

should occur simultaneously with the peak demand of 

active power, when there is no reactive support 

equipment on the grid.  

Therefore in order to forecast the non-compensated peak 

reactive power, a neural network is developed with power 

factor, peak active power and the angular coefficients as 

inputs. To develop the model it is necessary data of non-

compensated reactive power. To do so, instantaneous 

measurements of reactive power from capacitor banks 

and substations transformers should be added.  

This refinement uses the actual non-compensated power 

factor of the substation, as well as the values of 

maximum active and reactive power of a set of circuits 

with different market share in order to represent the 

different possible circuits in the network. 

Figure 6 shows a representative neural network models 

development flow chart for the angular variations, as well 

as for reactive power forecast. 

 

 
 

Figure 6: Angular coefficient and peak reactive power forecast models 
development. 

The both neural network models, together with a power 

factor estimation technique, are the tools to the non-

compensated peak reactive power forecasting. The 

models use only the market-share of the substation and 

the peak active power factor to forecast the non-

compensated peak reactive power. 

The power factor estimation technique uses the clustering 

of the substation being studied with several other known 

substations, using as decision variable the market-share, 

i.e. the percentage of each type of consumer, in order to 
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identify the type of this studied substation, and the power 

factor estimated is the standard power factor of that 

substation group. 

The use of the methodology is explained in Figure 7. This 

flowchart shows how the neural networks models are 

used in order to forecast the non-compensated peak 

reactive power of the substation. 

 

 
 

Figure 7: Peak reactive power forecast calculation. 

FORECASTING RESULTS 

In order to evaluate the methodology, historical 

measurements of active and reactive power in several 

DSO substations were used. In addition to these data, 

there are the historical billings of all consumers of these 

substations. It was found that there are no generators 

installed in these feeders and large consumers billing data 

are included in the historical data. Historical data 

comprise a total of thirty-six months from January 2011 

to December 2013. As the billing calendar readings are 

held on specific dates for different groups of consumers, 

monthly billings do not coincide with days of the month, 

which required a pre-treatment for performing 

cointegration analysis. 

The two first years are used to develop the models and 

the last year of data is used to validate the method, by 

comparing the forecasting with actual historical data. 

For the peak active power forecasting, the result shown in 

Figure 8 was obtained, where the measured and 

forecasted points for one substation are shown. The 

average relative error found for this analysis was of 8%.  

The methodology for the non-compensated peak reactive 

power forecast was developed using measurements from 

16 different substations with different types of 

consumers, one group predominantly industrial, another 

group predominantly residential and one group with 

mixed types of consumers. The historical data from these 

substations were used to acquire the neural network of 

the angular coefficient between first difference of active 

and reactive power, to create a database of average power 

factors from different types of substations and to acquire 

the neural network of the peak reactive power.  

In Figure 9 it is presented the monthly non-compensated 

peak reactive power forecast for a typical residential 

region. The average relative error found for this analysis 

was of 6.5%. The data used as input to the forecasting 

was only the peak active power and the market-share, as 

the neural network models, developed with several 

measurements and analysis of different substations, 

permits to estimate data of this substation  

 

 
 

Figure 8: Peak active power forecast and measured data for 

predominantly residential substation 

 
 

Figure 9: Peak reactive power forecast and measured data for 

predominantly residential substation 

 

The method was also applied to a predominantly 

industrial substation, where the peak active power and 

non-compensated peak reactive power have a more 
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complex behaviour. In Figure 10, the measurements of 

the historical data and the forecasted series for both 

active and non-compensated peak reactive power to the 

same substation are shown. This figure shows how the 

peak active power and non-compensated peak reactive 

power are strongly related when the reactive support is 

removed. The average relative errors for the active and 

reactive cases are respectively 12% and 8%.  

 
 
Figure 10: Peak active and reactive power for predominantly industrial 

substation 

CONCLUSIONS 

This paper proposed a complete methodology to peak 

active and non-compensated reactive power forecasting 

using data that is commonly available for DSOs: 

 Billing data; 

 Global energy forecast by consumer type; 

 Substations active and reactive power 

measurements. 

The peak active power forecasting method uses these data 

to develop a cointegration model to relate total substation 

energy with peak active power. The results show that 

these two variables are strongly related. The method was 

validated comparing real measurements with forecasted 

data. 

In the case of non-compensated peak reactive forecasting, 

the first difference of active and reactive power series is 

used to filter atypical events such as bank capacitors 

switching.  

An artificial neural network uses the relation between 

these first difference series, the peak active power and the 

non-compensated power factor as inputs to estimate the 

non-compensated peak reactive power. 

The results show that both methods can successfully 

forecast the peak active power and non-compensated 

peak reactive power with average errors about 10%, 

which is adequate to long-term planning studies.  
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